SMART METER LAN

Compteur d'énergie intelligent, compatible avec SMA, Fronius, Solar Edge, Solis, DEYE, Huawei, SDM-630, Victron TCP (EM-24 TCP), Victron RS-485 (EM-24 RTU) etc.

Mode d'emploi

Version 1.0

elgris GmbH

Langerweher Str. 10 D-52459 Inden Germany www.elgris.de anfrage@elgris.de

Table des matières

1. In	troduction	3
2. In	stallation	4
2.1	Consignes de sécurité	4
2.2	Diagramme de connexion LAN	4
2.3	Diagramme de connexion LAN	4
2.4	IP-Adresse	5
2.5 2.5 2.5	Convertisseur de puissance	5 5 5
2.6	Affectation des broches RS 485 LAN	6
3 In.	stallation	6
3.1	Première mise en service	6
4 In	terface utilisateur graphique	7
4.1	Aperçu	7
4.2	Les paramètres du système	8
5 M	ode fonctionnellement compatible SMA	
5.1	Connexion elgris avec SMA Home Manager	9
6 Ca	ompatibilité Solar Edge	
6.1	Configuration elgris	10
6.2 6.2	Configuration du bord solaire 2.1 Résistance de terminaison	10 11
7 Ca	ompatibilité Fronius	11
7.1	Configuration elgris	11
7.2	Configuration Fronius	12
8 Ca	ompatibilité SDM-630	12
8.1	Configuration elgris	12
8.1	Représentation du registre SDM-630	13
9 M	ODBUS TCP	13
9.1	Représentation au registre général	14
9.2	Représentation du registre Modèle de compteur WYE Connect	14
10 Sp	pécifications techniques	16

1. Introduction

Cher client, merci d'avoir acheté ce produit. Avec le SMART METER, vous pouvez déterminer vos valeurs de consommation et d'injection en temps réel et accéder à ces valeurs à tout moment et n'importe où sur notre site Internet.

Le SMART METER possède les fonctionnalités suivantes:

- Mesures monophasées et triphasées
- SMA Energy Meter EMETER 10 fonctionnellement compatible
- Fronius, Solar Edge, Huawei, Victron EM-24, SDM-630 TCP/RTU et bien d'autres compatibles
- Serveur SUNSPEC MODBUS/TCP/RTU intégré
- Mesure en temps réel de la consommation et de l'injection
- Intégration avec les serveurs cloud et les domotiques
- Intégration avec les serveurs cloud et domotiques

Spécialisé dans les produits d'énergie renouvelable, les générateurs diesel et les solutions d'énergie hybride, le SMART METER propose les normes suivantes:

- Large plage de tension d'alimentation : 100 240 VAC (50 60 Hz)
- Conception compacte
- Logiciel intuitif
- Carge plage de température : -25° +60°C.
- IP-20 classe de protection.

INSTALLATION UNIQUEMENT PAR DES PERSONNES AYANT DES CONNAISSANCES ET UNE EXPÉRIENCE APPROPRIÉES EN ÉLECTRICITÉ

Si quelque chose ne vous semble pas clair ou si vous avez d'autres questions, n'hésitez pas à nous contacter:

- E-Mail : <u>support@elgris.de</u>
- Telefon : +49 (0) 2423 9086501

2. Installation

2.1 Consignes de sécurité

Avant de mettre le produit en service, effectuez une inspection visuelle pour vous assurer qu'il n'y a pas de dommages de transport ou autres dommages.

Aucun des câbles de connexion ne doit être plié ou écrasé. Cela peut entraîner des dysfonctionnements, des courts-circuits et des défauts dans l'appareil connecté et/ou le capteur. Assurez-vous que les câbles ne sont pas endommagés lors du perçage ou du vissage. Le module ne peut être mis en service qu'après avoir été installé sans contact dans un boîtier. Ce produit génère des fréquences radio. N'utilisez jamais l'appareil à proximité d'appareils médicaux (par exemple des stimulateurs cardiaques) et/ou de bâtiments médicaux (par exemple des hôpitaux). Trouvez un emplacement d'installation approprié.

LOAD

Ethernet

RS-485

2.2 Diagramme de connexion LAN

2.3 Diagramme de connexion LAN

	Pin	Description	Minimum	Maximum		
a de	1	Entrée de tension phase 1	100 Vac	240 Vac		
rrée Insic	2	Entrée de tension phase 2	100 Vac	240 Vac		
Ent	3	Entrée de tension phase 3	100 Vac	240 Vac		
	4	Entrée de tension neutre		0 Vac		
	5	Convertisseur de puissance L1	elgris 100 A / 400 A	capteurs uniquement		
	K/L	Convertisseur de puissance L1	1 A / 5 A			
	6	Convertisseur de puissance L2	elgris 100 A / 400 A capteurs uniquement			
cité	K/L	Convertisseur de puissance L2	1 A / 5 A			
sctri trée	7	Convertisseur de puissance L3	elgris 100 A / 400 A capteurs uniquement			
Éle En	K/L	Convertisseur de puissance L3	1 A / 5 A			
5	1	Sélection de l'adresse IP	OFF = DHCP	ON = Statique		
ateu	2	Fréquence secteur	OFF = 50 Hz	ON = 60 Hz		
nuta DIP	3	Pour usage interne uniquement	OFF = défaut			
omr	4	Pour usage interne uniquement	OFF = défaut			
Ŭ						

2.4 IP-Adresse

Le SMART METER peut être commandé via le dipswitch 1 avec une adresse statique 192.168.1.100 (dipswitch 1 ON lorsqu'il est allumé). Si vous n'êtes pas familier avec les adresses IP, réglez le dipswitch 1 sur OFF et allumez le SMART METER (appliquez la tension entre L1 et N). Vous pouvez maintenant demander l'adresse IP actuelle via votre routeur.

Veuillez noter que l'adresse IP ne peut être définie que lorsque le module est sans alimentation. Les paramètres actuels ne sont demandés qu'une seule fois au démarrage.

2.5 Convertisseur de puissance

Des transformateurs de courant sont absolument nécessaires pour le SMART METER ; la mesure directe n'est pas possible!

Selon votre version SMART METER, vous pouvez utiliser des convertisseurs pliables elgris de 100 A ou 400 A, qui disposent d'un câble intégré d'environ 1 mètre de longueur et d'une fiche de 3,5 mm. Par défaut, la flèche sur le convertisseur pliable 100 A bleu doit pointer vers le réseau pour une valeur positive (consommation). Si la flèche pointe vers le consommateur, l'injection est positive et la consommation est négative.

2.5.1 Dimensions Transformateur de courant 100 A

2.5.2 Dimensions Transformateur de courant 400 A

2.6 Affectation des broches RS 485 LAN

2.7 État des voyants

La LED du SMART METER informe l'utilisateur de l'état interne.

Signalisation LED	Signification	Réparer		
Off	Pas d'alimentation ou erreur interne	Contactez le support		
	Erreur interne	Contactez le support		
	Erreur de câblage ou alimentation	Vérifier l'installation		

3 Installation

Avant de commencer à utiliser le SMART METER, toutes les précautions de sécurité applicables à votre pays et les règles générales de sécurité doivent être prises. Ne travaillez jamais sur un système avec un réseau connecté.

Seuls quelques réglages sont nécessaires pour mettre le SMART METER en service.

Le plus important, ce sont les réglages du transformateur de courant.

3.1 Première mise en service

Veuillez suivre les instructions ci-dessous lorsque vous allumez le SMART METER pour la première fois.

- Démarrez le SMART METER en appliquant une tension à L1 et N si vous avez un système monophasé ou à L1, L2 et L3 avec N si vous avez un système triphasé. Si le SMART METER fonctionne correctement, la LED clignotera en vert.
- Si vous utilisez une connexion LAN, assurez-vous que votre ordinateur est sur le même réseau et possède une adresse IP dans la même plage. Si vous utilisez le serveur DHCP, vous devez connaître l'adresse IP du SMART METER.
- Connectez-vous au serveur Web intégré en saisissant l'adresse IP dans un navigateur Web.

- Sélectionnez Paramètres dans le menu pour définir le rapport de transformation de courant. Le rapport du convertisseur est défini comme 1 : valeur. Par exemple, si vous avez un transformateur de courant 5 : 200, la valeur est 40. Pour le transformateur pliable elgris 100 A choisissez 2 et pour 400 A choisissez 4.
- Lorsque le rapport du convertisseur est modifié, les mesures de performances sur la page de résumé doivent correspondre aux performances réelles. Une valeur positive signifie la consommation du réseau, une valeur négative signifie l'injection dans le réseau. Si ce n'est pas correct, vérifier le câblage K et L du transformateur de courant.

4 Interface utilisateur graphique

Le SMART METER contient un serveur Web pour ajuster les paramètres du système et afficher l'état du système.

Le serveur Web intégré est accessible via un navigateur normal. Les navigateurs Web pris en charge sont Microsoft Edge, Google Chrome et Mozilla Firefox.

- L'adresse actuelle à laquelle vous pouvez joindre le SMART METER dépend du Dipswitch 1.
- Si le dipswitch 1 est en position haute (ON), alors vous pouvez joindre le SMART METER à l'adresse statique 192.168.1.100.
- Si le dipswitch 1 est abaissé, le SMART METER reçoit une adresse automatique (DHCP).
 Vous pouvez lire l'adresse actuelle sur l'interface du routeur.

4.1 Aperçu

4.2 Les paramètres du système

Le mot de passe des paramètres par défaut est 12345678

=	SMA1900	042340)					Celari	s	
	21.02.202	4 60.02						Cordin		Informations d'état et informations sur les paramètres
RÉSEAU MÈTRE Sm										
	9600		8		Aucup		1			
PAKAME I KES KS405 A	5000	~		~	Adcun	~				
		_	м	lise a jou	r RS485 A	_		_		
PARAMÈTRES RS485 B	9600	~	8	~	Aucun	~	1	~		
			М	lise à jou	r RS485 B					Paramètres pour l'adresse IP le BLIS
RAPPORT CT	100 A	~] [Inve	rsé ?	Mettre	à jour le	rappor	rt CT		RS485 et le transformateur de courant
MODBUS RTU A	1	SDM-	630/Sl	UNS 🗸	Mettre à	i jour Mo	dbus R	TUA		
MODBUS RTU B	1	SDM-	-630/Sl	UNS 🗸	Mettre à	i jour Mo	dbus R	тив		
MODBUS-TCP	1	SDN	1-630/9	SUNSPE	✓ □ м	odbus RT	U sur TC	CP/IP		
		-	Mett	re à jour	Modbus TCI	2				
	Désactivé		Met	tre à iou	l'intervalle	du com	teur SN	MA		
COMPTEUR SMA	2 33361110	× I		Jour						
LECTURE DE PUISSANCE	0	Me	ettre à j	jour le de	icalage de l	ecture d	e puissa	ance		

MODBUS RTU: Slave ID et protocole

5 Mode fonctionnellement compatible SMA

L'elgris SMART METER est fonctionnellement compatible avec le SMA EMETER-10. Cela signifie que les onduleurs SMA reconnaissent l'elgris SMART METER comme un SMA EMETER.

v Veuillez vérifier au préalable si votre onduleur peut reconnaître un compteur d'énergie.

L'image suivante montre un SMART METER elgris dans le logiciel de l'onduleur SMA:

SUNNY BOY 1.5							SMA
# Home	Instantaneous Values	C Device	Parameters	Events	✤ Device Configurat	ion	1 - 0 -
Devices in	the system						User Information
	Device name	Device status	Serial numbe	er Firm	ware version installed	Settings	Device Configuration
	SB1.5-1VL-40 187	0	1930089187		2.5.1.R	٥	You can select the following settings on your device via the button shown above:
	Meter on Speedwire	0	1900013878			٥	Change the device names. Update the firmware. Save the current configuration of the
Devices for	ind						device in a file. • Adopt configuration of a device from a file. • Delete the device
	Device name			Serial n	umber	Settings	Add a detected SMA Energy Meter to the
	Serial numbers for usable meters			190001	13878	٥	system. The SMA Energy Meter is used as purchased electricity meter and feed-in meter.

L'onduleur SMA transmet les données de mesure au portail en ligne Sunny Places. En outre, le Cloud elgris peut également être utilisé, car le portail en ligne SMA affiche uniquement la puissance et non les différents paramètres tels que la tension, le courant, le facteur de puissance, etc.

5.1 Connexion elgris avec SMA Home Manager

L'elgris SMART METER LAN peut également être utilisé comme compteur d'énergie en combinaison avec un SMA Home Manager. L'elgris SMART METER peut être utilisé soit pour la production photovoltaïque, soit comme mesure du réseau.

Comme le compteur d'énergie SMA, l'elgris SMART METER n'est pas affiché comme appareil indépendant sur le Sunny Portal.

Accédez à l'aperçu des appareils et sélectionnez les propriétés du SHM.

Anlagenauswahl	Geräteibersicht Übersicht Neugeröte							
Home Manager	Gerätename: Seriennummer:	Geräte: Da	itenannahme:					
Anlagenübersicht		ale 🗸 A	ktir 👻					
Anlagensteckbrief	Aktualisieren Zurikkentan	Parameter aktualizieren						
Aktueller Status and Prognose	Addustibleren	Parameter actualisieren				\sim		
Energiebilanz	Gerätename 🔺	Seriennummer	Produktgruppe	Datenannahme	Überwachung	Eigenschaften	Parameter	Logbuch
Jahresvergleich	B Home Manager 2 050		Sunny Home Manager 2.0	•	۰		×	
Anlagenüberwachung						\sim		
Anlagenlogbuch: 17								
Analyse								
Report (2)								
🔆 Konfiguration 🗸								
Anlageneigenschaften								
Anlagenprösentation								
Gerateubersicht								
Verbraucherübersicht und -plan								

Cliquez ensuite sur « Modifier » en bas et sélectionnez « Configuration avancée » en haut.

<	Geräteübersicht	nager 2 050	Parameter									
	Geräteeigenschaften											
	Ansicht: O Einfache	Konfiguration (E	rweiterte Konfigu	iration								
	Geräteklasse:		Sunny Home Manager									
	Produktgruppe:		Discussion Sunny Home Manager 2.0									

Dans le point de menu « Configuration du compteur », vous pouvez maintenant sélectionner l'elgris SMART METER comme compteur d'énergie SMA. Enfin, la configuration doit être sauvegardée.

Bezug und Einspeisung:	SMA Energy Meter 1900055144 🗙	
PV-Erzeugung:	kein Zähler Internes Energy Meter	Es werden die PV-Erzeugungsdaten der angeschlossenen SMA Wechselrichter verwendet.
Messintervall internes Energy Meter:	SMA Energy Meter 1900055144 1000 ms V	
Direkte Zähler Kommunikation:	Geräte IP 1: Geräte IP 2: Geräte IP 3:	0

6 Compatibilité Solar Edge

L'elgris SMART METER est compatible avec le protocole du compteur Solar Edge et peut donc également être utilisé simultanément comme compteur Solar Edge et comme compteur SMA.

Grâce à cette double fonction, vous n'avez besoin que d'un elgris SMART METER comme compteur d'énergie et en parallèle vous pouvez effectuer un contrôle logiciel à 70 % sur le Solar Edge et connecter un périphérique de stockage SMA, par exemple.

Le câblage RS-485 est identique à celui du compteur Solar Edge:

Pin	elgris	Solar Edge
A	A	A
В	В	В
Ground	GND	G

Le SMART METER elgris est équipé en standard d'une résistance de terminaison.

6.1 Configuration elgris

Pour que les deux appareils communiquent entre eux, l'ID de l'appareil et le débit en bauds doivent être identiques. Par défaut, un débit en bauds de 9600 8N1 est recommandé avec l'ID de périphérique 2.

Die Geräte ID oder Slave Adress finden Sie unter Start->Einstellungen->Meter

MODBUS RTU A	2	SolarEdge		~	Mettre à jour Modbus RTU A			
PARAMÈTRES RS485 A	9600	~	8	~	Aucun 🗸		1	~
			Mis	se à jou	r RS485 A			

Pour que les modifications soient appliquées, l'elgris SMART METER doit être redémarré en interrompant brièvement la tension.

6.2 Configuration du bord solaire

- 1. Vérifiez si la tension alternative est présente sur l'onduleur.
- 2. Vérifiez que le fusible du compteur (si installé) n'est pas cassé (les LED du compteur clignotent ou s'allument).
- 3. Entrez en mode Configuration, faites défiler jusqu'au menu « Communications » et sélectionnez « Communications RS485-X Conf »"
- 4. Définissez les paramètres suivants (X représente le port RS485 auquel le compteur est connecté : 1 ou 2):

- 5. Sélectionnez Type d'appareil -> Compteur de rendement -> **WattNode**.
- 6. Réglez la valeur CT à 100, qui apparaît sur le compteur CT : valeur CT

7. Sélectionner la fonction du compteur injection+achat ou consommation selon la position du compteur:

8. Dans le menu RS485 Conf, assurez-vous que l'ID de l'appareil est défini sur 2, puis quittez le mode configuration.

6.2.1 Résistance de terminaison

Vérifiez si le terminateur RS485 (commutateur DIP) de l'onduleur est allumé.

De plus amples informations peuvent être trouvées sur Solar Edge, le compteur elgris est compatible avec le SE-WND-3Y400-MB-K1.

7 Compatibilité Fronius

L'elgris SMART METER LAN est également compatible avec le protocole de compteur intelligent Fronius. Cela signifie que vous pouvez utiliser un SMART METER elgris avec un onduleur Fronius avec Datamanager 2.0 pour un contrôle d'injection de 70 % ou zéro..

En parallèle, vous pouvez également utiliser le protocole SMA et, par exemple, intégrer une mémoire SMA.

Pin	elgris	Fronius
A	A	A
В	В	В
Ground	GND	GND

Le câblage RS-485 est identique à celui du compteur Fronius :

L'elgris SMART METER est équipé en standard d'une résistance de terminaison.

7.1 Configuration elgris

Pour que les deux appareils communiquent entre eux, l'ID de l'appareil et le débit en bauds doivent être identiques. Par défaut, un débit en bauds de 9 600 8N1 est recommandé avec l'ID de périphérique 1.

L'ID de l'appareil ou l'adresse de l'esclave se trouve sous Démarrer-> Paramètres-> Compteur:

PARAMÈTRES RS485 A	9600	~	8	~	Aucun	~	1	~		
	Mise à jour RS485 A									
MODBUS RTU A	1 FRONIUS 🗸 Mettre à jour Modbus									

Pour que les modifications prennent effet, l'elgris SMART METER doit être redémarré en coupant brièvement l'alimentation.

7.2 Configuration Fronius

Allez dans le point de menu « Compteur » et sélectionnez le Fronius Smart Meter.

Une fenêtre montre le processus de recherche:

Hinweis	1
Der Zähler wurde aktiviert und sollte in kürze Daten liefern. Bitte warten Sie einen Mon Status: suche Zähler	ient!
Abbrech	en

Le compteur sera alors affiché avec un numéro de série:

Hinweis	
Status: OK Zählerposition:	Bezug 0 W Einspeisepunkt O Verbrauchszweig
Modbus Adresse:	1
Seriennummer:	1900044068
	OK Abbrechen

La mise en service est ainsi terminée et les paramètres peuvent être enregistrés.

8 Compatibilité SDM-630

Le SMART METER LAN elgris est également compatible avec le compteur SDM-630. Vous pouvez récupérer les données via MODBUS TCP ainsi que RTU.

Cette compatibilité signifie que vous pouvez également connecter des onduleurs prenant en charge le SDM-630 au elgris SMART METER LAN et ainsi contrôler une mémoire SMA ou une wallbox, par exemple.

Le câblage RS-485 utilise A, B et GND.

L'elgris SMART METER est équipé en standard d'une résistance de terminaison.

8.1 Configuration elgris

Pour que les deux appareils communiquent entre eux, l'ID de l'appareil et le débit en bauds doivent être identiques. Par défaut, un débit en bauds de 9600 8N1 est recommandé avec un ID de périphérique 1.

L'ID de l'appareil ou l'adresse de l'esclave se trouve sous Démarrer-> Paramètres-> Compteur:

8.1 Représentation du registre SDM-630

Les registres suivants sont accessibles via MODBUS TCP avec l'ID d'esclave = 1 ou RTU (avec l'adresse définie) et la fonction 0x04.

L'adresse du registre commence par 1.

Address	Size	Name	Label	Value	Туре	R/W	Description
30001	2	PhVphA	Voltage AN		float	R	Phase voltage AN
30003	2	PhVphB	Voltage BN		float	R	Phase voltage BN
30005	2	PhVphC	Voltage CN		float	R	Phase voltage CN
30007	2	AphA	Amps Phase A		float	R	Phase A current
30009	2	AphB	Amps Phase B		float	R	Phase B current
30011	2	AphC	Amps Phase C		float	R	Phase C current
30013	2	WphA	Watts phase A		float	R	Real power phase A
30015	2	WphB	Watts phase B		float	R	Real power phase B
30017	2	WpbC	Watts phase C		float	R	Real power phase C
30019	2	VAphA	VA phase A		float	R	Apparent power phase A
30021	2	VAphB	VA phase B		float	R	Apparent power phase B
30023	2	VAphC	VA phase C		float	R	Apparent power phase C
30025	2	VARphA	VA phase A		float	R	Reactive power phase A
30027	2	VARphB	VA phase B		float	R	Reactive power phase B
30029	2	VARphC	VA phase C		float	R	Reactive power phase C
30031	2	PFphA	PF phase A		float	R	
30033	2	PFphB	PF phase B		float	R	
30035	2	PFphC	PF phase C		float	R	
30037	2		Voltage Angle A		float	R	Voltage angle A
30039	2		Voltage Angle B		float	R	Voltage angle B
30041	2		Voltage Angle C		float	R	Voltage angle C
30043	2		Voltage LN		float	R	Average LN voltage
30047	2		Current LN		float	R	Average LN current
30049	2		Sum of current		float	R	Sum of current
30053	2		Total W		float	R	Total system power
30057	2		Total VA		float	R	Total system VA
30061	2		Total Var		float	R	Total system Var
30063	2		Total PF		float	R	Total system PF
30067	2		Total angle		float	R	Total system angle
30071	2		Frequency		float	R	Frequency
30073	2		Total Imp. kWh		float	R	Total Import kWh
30075	2		Total Exp. kWh		float	R	Total Export kWh
30077	2		Tot. Imp. kVArh		float	R	Total Import kVArh
30079	2		Tot. Exp. kVArh		float	R	Total Export kVArh
30081	2		Tot. VAh		float	R	Tot VAh

9 MODBUS TCP

L'ELGRIS SMART METER comprend un serveur MODBUS TCP avec mappage des paramètres selon la liste de paramètres SunSpec 203. En fournissant un protocole ouvert, la mise en œuvre peut être facilement adaptée aux besoins des utilisateurs.

Par défaut, MODBUS utilise le port 502 et l'ID esclave = 1.

9.1 Représentation au registre général

La première adresse de registre est 40000 et les registres peuvent être lus à l'aide de la fonction 0x03.

Address	Size	Name	Label	Value	Туре	R/W	Description
							Value = "SunS" (0x53756e53).
40000	2	ID	Common	1	uint32	R	Uniquely identifies this as a
							SunSpec MODBUS Map
							Value = 0x0001. Uniquely identifies
40002	1	DID	SunSpec_DID	1	uint16	R	this as a SunSpec Common Model
							Block
10002	1		SupSpace Longth	65	uint16	р	65 = Length of block in 16-bit
40003	L L	L	Sunspec_Length	05	unitio	n	register
40004	16	Mn	Manufacturer		string	R	"elgris"
40020	16	Md	Model		string	R	"SMART METER"
40036	8	Opt	Options		String	R	Not used, for future compatibility
40044	8	Vr	Version		string	R	"1.10.15"
40052	16	SN	Serial Number		string	R	19000XXXX (SMA serial compliant)

9.2 Représentation du registre Modèle de compteur WYE Connect

Address	Size	Name	Label	Value	Туре	R/W	Description
							Value = 203
			WYE-connect				Uniquely identifies this
40069	1	ID	three phase	1	uint16	R	as a
			(abcn) meter				SunSpec 203 MODBUS
							Мар
40070	1		SunSnoc Longth	105	uin+16	D	105 = Length of block in
40070	T	L	Sunspec_Length	105	unitio	n	16-bit register
40071	1	А	Amps		int16	R	Total AC current
40072	1	AphA	Amps Phase A		int16	R	Phase A current
40073	1	AphB	Amps Phase B		int16	R	Phase B current
40074	1	AphC	Amps Phase C		int16	R	Phase C current
40075	1	A_SF			sunssf	R	Current scale factor
40076	1	PhV	Voltage LN		in+16	D	Line to neutral AC
40076					IIILIO	n	voltage
40077	1	PhVphA	Voltage AN		int16	R	Phase voltage AN
40078	1	PhVphB	Voltage BN		int16	R	Phase voltage BN
40079	1	PhVphC	Voltage CN		int16	R	Phase voltage CN
40080	1	PPV	Voltage LL		int16	R	Line to Line AC voltage
40081	1	PhVphAB			uint16	R	Line voltage AB
40082	1	PhVphBC			uint16	R	Line voltage BC
40083	1	PhVphCA			uint16	R	Line voltage CA
40084	1	V_SF			sunssf	R	Voltage scale factor
40085	1	Hz	Hz		int16	R	Frequency
40086	1	Hz_SF			sunssf	R	Frequency scale factor
40087	1	W	Watts		int16	R	Total real power
40088	1	WphA	Watts phase A		int16	R	Real power phase A
40089	1	WphB	Watts phase B		int16	R	Real power phase B
40090	1	WpbC	Watts phase C		int16	R	Real power phase C
40091	1	W_SF			sunssf	R	Real power scale factor

40092	1	VA		int16		AC apparent power
40093	1	VAphA	VA phase A	int16	R	Apparent power phase A
40094	1	VAphB	VA phase B	int16	R	Apparent power phase B
40095	1	VAphC	VA phase C	int16	R	Apparent power phase C
40096	1	VA_SF		sunssf	R	Apparent power scale factor
40097	1	VAR		int16		AC reactive power
40098	1	VARphA	VA phase A	int16	R	Reactive power phase A
40099	1	VARphB	VA phase B	int16	R	Reactive power phase B
40100	1	VARphC	VA phase C	int16	R	Reactive power phase C
40101	1	VAR_SF		sunssf	R	Reactive power scale factor
40102	1	PF	PF	int16	R	Power factor
40103	1	PFphA	PF phase A	int16	R	
40104	1	PFphB	PF phase B	int16	R	
40105	1	PFphC	PF phase C	int16	R	
40106	1	PF_SF		sunssf	R	Power factor scale factor
40107	2	TotWhExp		acc32	R	Total Wh exported
40109	2	TotWhExpPhA		acc32	R	Total Wh exported phase A
40111	2	TotWhExpPhB		acc32	R	Total Wh exported phase B
40113	2	TotWhExpPhC		acc32	R	Total Wh exported phase C
40115	2	TotWhImp		acc32	R	Total Wh imported
40117	2	TotWhImpPhA		acc32	R	Total Wh imported phase A
40119	2	TotWhImpPhB		acc32	R	Total Wh imported phase B
40121	2	TotWhImpPhC		acc32	R	Total Wh imported phase C
40123	1	TotWhSF		sunssf	R	Real energy scale factor
40125	2	TotVARhExp		acc32	R	Total VAR exported
40127	2	TotVARhExpPhA		acc32	R	Total VAR exported phase A
40129	2	TotVARhExpPhB		acc32	R	Total VAR exported phase B
40131	2	TotVARhExpPhC		acc32	R	Total VAR exported phase C
40133	2	TotVARhImp		acc32	R	Total VAR imported
40135	2	TotVARhImpPhA		acc32	R	Total VAR imported phase A

10 Spécifications techniques

			Dépend de la version WiFi ou LAN			
			Wert			
	Processeur		32 Bits Processeur			
	Interface LAN		10 / 100 Mbit MDIX			
	Interface RS-485		1200 – 115200 Baud			
<u>e</u>	Tension nominale	Vac	230 / 400			
nér	Tension de fonctionnement	Vac	100 – 240			
gé	Gamme de fréquences	Hz	50 / 60			
ш	Consommation propre totale	W	< 1			
	Électricité	mA	50 / 100 / 1000 / 5000 (convertisseur)			
	Courant de démarrage	mA	1			
	Tension	%	0,5			
	Électricité	%	0,5			
	Puissance active	%	1,0			
ion	Puissance apparente	%	1,0			
cisi	Puissance réactive	%	1,0			
Pré	Facteur de puissance (PF)	%	1,0			
	Puissance active IEC 62053-22		Klasse 1			
	Classe de protection		II			
	Classe de protection		IP20			
	Poids	kg	0,2 - 0,3			
s	Dimensions	TE	4			
ron	Bornes de section de connexion	mm²	< 4			
nzi	Température ambiante	°C	-10 - 40			
ш	Altitude maximale au-dessus du	m	1000			
	niveau de la mer					