SMART METER LAN

Smart Energie Meter, kompatibel mit SMA, Fronius, Solar Edge, Solis, DEYE, Huawei, SDM-630, Victron TCP (EM-24 TCP), Victron RS-485 (EM-24 RTU) etc.

Bedienungsanleitung

LAN

Version 2.3

elgris GmbH Langerweher Str. 10 D-52459 Inden Germany www.elgris.de anfrage@elgris.de

Inhaltsverzeichnis

1. Ei	nführung	3
2. In:	stallation	4
2.1	Sicherheits-Anweisungen	4
2.2	Anschluss-Diagramm LAN	4
2.3	Anschluss-Diagramm LAN	4
2.4	IP-Adresse	5
2.5	Stromwandler	5
2.5	5.1 Abmessungen 100 A Stromwandler	5
2.5	5.2 Abmessungen 400 A Stromwandler	5
2.6	RS 485 pin-Belegung LAN	6
3 In	betriebnahme	6
3.1	Erste Inbetriebnahme	6
4 Gr	rafische Benutzeroberfläche	7
4.1	Übersicht	7
4.2	System Einstellungen	
5 SN	MA funktional kompatibler Modus	
5.1	elgris Anbindung mit SMA Home Manager	
6 So	lar Edge Kompatibilität	9
6.1	elgris Konfiguration	10
6.2	Solar Edge Konfiguration	10
6.2	2.1 Abschlusswiderstand	11
7 Fr	onius Kompatibilität	11
7.1	elgris Konfiguration	11
7.2	Fronius Konfiguration	12
8 SC	DM-630 Kompatibilität	12
8.1	elgris Konfiguration	12
8.1	SDM-630 Register Darstellung	13
9 M	ODBUS TCP	14
9.1	Allgemeine Register Darstellung	14
9.2	Register-Darstellung WYE connect Meter Model	14
10	Technische Spezifikationen	16

1. Einführung

Sehr geehrter Kunde, vielen Dank für den Kauf dieses Produktes. Mit dem SMART METER ermitteln Sie Ihre Verbrauchs- sowie Einspeisewerte in Echtzeit und können auf diese Werte jederzeit und überall auf unserer Website zugreifen.

Der SMART METER besitzt folgende Eigenschaften:

- Einphasige und dreiphasige Messungen
- SMA Energy Meter EMETER 10 funktional kompatibel
- Fronius, Solar Edge, Huawei, Victron EM-24, SDM-630 TCP/RTU uvm kompatibel
- SUNSPEC MODBUS/TCP Server integriert
- Chtzeit-Messung von Verbrauch und Einspeisung
- Integration mit Cloud-Servern und Home Automatisierungen.
- Einfache Bedienung über integrierte Webkonfiguration.

Spezialisiert auf Produkte für erneuerbare Energien, Diesel-Generatoren und Hybrid-Power-Lösungen, bietet der SMART METER folgende Standards:

- Großer Bereich der Versorgungsspannung: 100 240 V_{AC} (50 60 Hz)
- Kompakte Bauweise
- Intuitive Software
- ☞ Große Temperatur-Spanne: -25° +60°C.
- IP-20 Schutzklasse.

INSTALLATION NUR DURCH PERSONEN MIT EINSCHLÄGIGEN ELEKTROTECHNISCHEN KENNTNISSEN UND ERFAHRUNGEN

Wenn Ihnen etwas unklar geblieben ist oder Sie weitere Fragen haben, kontaktieren Sie uns gerne:

- E-Mail : <u>support@elgris.nl</u>
- Telefon : +31 (0) 85 0603 944

2. Installation

2.1 Sicherheits-Anweisungen

Stellen Sie vor der Inbetriebnahme des Produktes durch eine Sichtprüfung sicher, dass keine Transportschäden oder sonstige Beschädigungen vorhanden sind.

Keines der Verbindungskabel darf geknickt oder gequetscht werden. Dies kann zu Fehlfunktionen, Kurzschlüssen und Defekten im angeschlossenen Gerät und / oder Sensor führen.

Stellen Sie sicher, dass die Kabel beim Bohren oder Verschrauben nicht beschädigt werden. Das Modul darf erst in Betrieb genommen werden, nachdem es berührungslos in einem Gehäuse installiert wurde. Dieses Produkt erzeugt Hochfrequenz. Betreiben Sie das Gerät niemals in der Nähe von medizinischen Geräten (z. B. Herzschrittmachern) und / oder medizinischen Gebäuden (z. B. in Krankenhäusern). Suchen Sie nach einem geeigneten Installationsort.

2.2 Anschluss-Diagramm LAN

2.3 Anschluss-Diagramm LAN

	Pin	Beschreibung	Minimum	Maximum	
ngs-	1	Phase 1 Spannungs-Eingang	100 Vac	240 Vac	
nnu ngai	2	Phase 2 Spannungs-Eingang	100 Vac	240 Vac	
Spai	3	Phase 3 Spannungs-Eingang	100 Vac	240 Vac	
	4	Neutraler Spannungs-Eingang		0 Vac	
60	5	Stromwandler L1	elgris 100 A / 40	00 A sensor only	
om gan	6	Stromwandler L2	elgris 100 A / 400 A sensor only		
Str	7	Stromwandler L3	elgris 100 A / 400 A sensor only		
	1	IP Adressen-Auswahl	OFF = DHCP	ON = Statisch	
ţc	2	Netzfrequenz	OFF = 50 Hz	ON = 60 Hz	
swit	3	Nur für den internen Gebrauch	OFF = Standard		
Dip	4	Nur für den internen Gebrauch	OFF = Standard		
			•	·	

2.4 IP-Adresse

Der SMART METER kann über Dipswitch 1 mit einer statischen Adresse 192.168.1.100 (Dipswitch 1 ON beim Einschalten) betrieben werden. Sollten Sie nicht mit IP-Adressen vertraut sein, dann stellen Sie Dipswitch 1 auf OFF und schalten den SMART METER ein (Spannung zwischen L1 und N anlegen). Über Ihren Router können Sie jetzt die aktuelle IP-Adresse abfragen.

Bitte beachten Sie, dass die IP-Adresse nur eingestellt werden kann, wenn das Modul stromlos ist. Die aktuellen Einstellungen werden nur einmalig beim Hochfahren abgefragt.

2.5 Stromwandler

Stromwandler werden zwingend für den SMART METER benötigt, eine direkte Messung ist nicht möglich!

Abhängig von Ihrer SMART METER-Version können elgris Klappwandler mit 100 A oder 400 A verwendet werden, welche über ein integriertes Kabel von zirka 1 Meter Länge sowie 3,5 mm-Stecker verfügen.

Standardmäßig muss beim blauen 100 A-Klappwandler der Pfeil zum Netz zeigen für einen positiven Wert (Verbrauch). Wenn der Pfeil zum Verbraucher zeigt, ist die Einspeisung positiv und der Verbrauch negativ.

2.5.1 Abmessungen 100 A Stromwandler

2.5.2 Abmessungen 400 A Stromwandler

2.6 RS 485 pin-Belegung LAN

	Pin	Belegung
	1	Nicht angeschlossen
	2	RS-232 TX
12345678	3	RS-232 RX
*******	4	RS-485 B (D-)
	5	RS-485 A (D+)
	6	GND
	7	RS-485 B (D-) Port 2 *
	8	RS-485 A (D+) Port2 *
		* Auf Anfrage

2.7 LED Status

Die LED auf dem SMART METER informiert den Benutzer über den internen Status.

LED Signal			Bedeutung	Behebung
Off		Kein Strom oder interner Fehler	Support kontaktieren	
		Interner Fehler	Support kontaktieren	
			Normalbetrieb	
		Verdrahtungsfehler oder Einspeisung	Installation prüfen	

3 Inbetriebnahme

Bevor mit der Inbetriebnahme des SMART METER begonnen wird, müssen alle Sicherheitsvorkehrungen getroffen werden, die für Ihr Land und für die allgemeinen Sicherheitsregeln gelten. Arbeiten Sie niemals an einem System mit angeschlossenem Netz.

Für die Inbetriebnahme des SMART METER sind nur wenige Einstellungen notwendig.

Am wichtigsten sind die Einstellungen des Stromwandlers.

3.1 Erste Inbetriebnahme

Richten Sie sich bitte nach den folgenden Anweisungen, wenn Sie den SMART METER zum ersten Mal einschalten.

- Starten Sie den SMART METER durch Anlegen von Spannung an L1 und N, wenn Sie ein einphasiges System betreiben oder an L1, L2 und L3 mit N, wenn Sie ein dreiphasiges System vorliegen haben. Wenn der SMART METER ordnungsgemäß funktioniert, blinkt die LED grün.
- Stellen Sie bei Verwendung einer LAN-Verbindung sicher, dass sich Ihr Computer im selben Netzwerk befindet und über eine IP-Adresse im selben Bereich verfügt. Wenn Sie den DHCP-Server verwenden, müssen Sie die IP-Adresse des SMART METER kennen.
- Stellen Sie eine Verbindung zum integrierten Webserver her, indem Sie in einen Webbrowser die IP-Adresse eingeben.

- Wählen Sie im Menü "Einstellungen", um das Stromwandler-Verhältnis einzustellen. Das Wandlerverhältnis ist definiert als 1: Wert. Wenn Sie beispielsweise einen Stromwandler 5: 200 haben, ist der Wert 40. Für elgris 100 A Klappwandler wählen Sie 2 und bei 400 A 4.
- Wenn das Wandlerverhältnis geändert wird, sollten die Leistungsmesswerte auf der Übersichtsseite mit der tatsächlichen Leistung übereinstimmen. Ein positiver Wert bedeutet einen Verbrauch aus dem Netz, ein negativer Wert bedeutet die Einspeisung in das Netz. Wenn dies nicht stimmt, prüfen Sie die Verkabelung von K und L des Stromwandlers.

4 Grafische Benutzeroberfläche

Der SMART METER enthält einen Webserver, um die Systemparameter anzupassen und den Status des Systems anzuzeigen.

Der integrierte Web-Server kann über einen normalen Browser erreicht werden. Unterstützte Webbrowser sind Microsoft Edge, Google Chrome und Mozilla Firefox.

- Die aktuelle Adresse, unter der Sie den SMART METER erreichen können, hängt von Dipswitch 1 ab.
- Steht Dipswitch 1 nach oben (ON), dann erreichen Sie den SMART METER unter der statischen Adresse 192.168.1.100.
- Steht Dipswitch 1 nach unten, dann erhält der SMART METER eine automatische Adresse (DHCP).

Die aktuelle Adresse können Sie auf der Routeroberfläche ablesen.

4.1 Übersicht

4.2 System Einstellungen

Celgris			Sprache 🗸 S	MART METER Version: 1.14.11	
			Start	Einstellungen	
	Syster	m Information			
Allgemein					
Seriennummer		001d.003b.500e.5931.3039.2033	3		Statusinformation und
RS 485 Einstellungen		No valid configuration		Information über Finstellungen	
Broadcast		SMA broadcast standard			
Gesamt Netzbezug kWh		0.000 kWh			
Gesamt Eingespeiste kWh		0.000 kWh			
Erweiterte Einstellungen		Erweiterte Einstellunge	en		
192.168.1.100	IP Adresse aktualisieren	1200 🗸 8 🗸	None 👻 1 👻 🖡	S-485 aktualisieren	Einstellungen für ID Addresse
255.255.255.0	Netmask aktualisieren	CT ratio 1: 0		Wandlerverhältnis	Ellistelluligen für IP Addresse,
192.168.1.1	Gateway aktualisieren	VT ratio 1: 0.0		Wandlerverhältnis	R5485-BOS und Stronnwandler
		SMA Turbo :	icht aktiviert O Aktiviert	SMA Turbo	
		MODBUS RTU:	1 Inverter 🗸	MODBUS RTU	

CT = Stromwandler: 2 für 100 A und 4 für 400 A oder 1 : bei andere Wandler Turbo = SMA Datenfrequenz 2 Hz statt 1 Hz MODBUS RTU: Slave ID und Protokoll

5 SMA funktional kompatibler Modus

Der elgris SMART METER ist funktional kompatibel mit dem SMA EMETER-10. Dies bedeutet, dass SMA Wechselrichter den elgris SMART METER als SMA EMETER erkennen.

[©] Bitte prüfen Sie im Vorfeld, ob Ihr Wechselrichter einen Energymeter erkennen kann.

Das folgende Bild zeigt einen elgris SMART METER in der SMA Wechselrichter-Software:

SUNNY BOY 1.5						SMA	
🖶 Home	Instantaneous Values	C Device	Parameters	Events	A Device Configuration	n	1 - 0 -
Devices in t	the system						User Information
	Device name	Device status	Serial numb	er Fim	ware version installed	Settings	Device Configuration
	SB1.5-1VL-40 187	0	193008918	7	2.5.1.R	٥	You can select the following settings on your device via the button shown above:
	Meter on Speedwire	0	190001387	8		٥	Change the device names. Update the firmware. Save the current configuration of the
Devices fou	Ind Device name			Serial n	umber	Settings	evice in a tite. • Adopt configuration of a device from a file. • Delete the device • Add a detected SIMA Energy Meter to the
	Serial numbers for usable meters			19000	13878	٥	system. The SMA Energy Meter is used as purchased electricity meter and feed-in meter.

Der SMA Wechselrichter übermittelt die Messdaten an das Sunny Places Online-Portal. Zusätzlich kann auch die elgris Cloud verwendet werden, da das SMA Online-Portal nur die Leistung und nicht die einzelnen Parameter wie Spannung, Strom, Leistungsfaktor usw. anzeigt.

5.1 elgris Anbindung mit SMA Home Manager

Der elgris SMART METER LAN kann auch als Energymeter in Kombination mit einen SMA Home Manager betrieben werden. Der elgris SMART METER kann entweder für die PV-Erzeugung oder als Netzerfassung genutzt werden.

Der elgris SMART METER wird wie der SMA Energymeter nicht als eigenständiges Gerät im Sunny Portal angezeigt.

Gehen Sie zur Geräteübersicht und wählen Sie die Eigenschaften vom SHM.

Dann klicken Sie unten auf "Bearbeiten" und wählen oben "Erweiterte Konfiguration".

Beim Menüpunkt "Zählerkonfiguration" können Sie jetzt den elgris SMART METER als SMA Energymeter auswählen. Abschließend muss die Konfiguration gespeichert werden.

Bezug und Einspeisung:	SMA Energy Meter 1900055144 💙	
PV-Erzeugung:	kein Zähler Internes Energy Meter	🛈 Es werden die PV-Erzeugungsdaten der angeschlossenen SMA Wechselrichter verwendet.
Messintervall internes Energy Meter:	SMA Energy Meter 1900055144 1000 ms ♥	
Direkte Zähler Kommunikation:	Geräte IP 1: Geräte IP 2:] 0

6 Solar Edge Kompatibilität

Der elgris SMART METER ist kompatibel mit dem Solar Edge Zähler-Protokoll und kann somit auch als Solar Edge Zähler und SMA Zähler gleichzeitig genutzt werden.

Durch diese Doppel-Funktion brauchen Sie lediglich einen elgris SMART METER als Energymeter und können parallel eine 70% weiche Regelung am Solar Edge machen und beispielsweise einen SMA Speicher anbinden.

Die RS-485 Verkabelung ist identisch mit der am Solar Edge Zähler:

Pin	elgris	Solar Edge
A	A	A
В	В	В
Ground	GND	G

Der elgris SMART METER hat standardmäßig einen Abschlusswiderstand.

6.1 elgris Konfiguration

Damit beide Geräte miteinander kommunizieren können, müssen sowohl die Geräte ID als auch die Baudrate identisch sein. Standardmäßig wird eine Baudrate von 9600 8N1 empfohlen mit der Geräte ID 2.

Die Geräte ID oder Slave Adress finden Sie unter Start->Einstellungen->Allgemein unter "Erweiterte Einstellungen":

MODBUS RTU:	2	SolarEdge	~	MODBUS RTU

Es wird immer die Standard-Adresse 1 sowie der Inverter angezeigt, unabhängig davon, was eingestellt worden ist.

Erweiter	te Einste	llunger	ו				
9600	~ 8	~	Kein	~	1	~	RS-485 Aktualisieren

Damit die Änderungen übernommen werden, muss das elgris SMART METER nochmal neu gestartet werden, indem die Spannung kurz unterbrochen wird.

6.2 Solar Edge Konfiguration

- 1. Überprüfen Sie, ob die AC-Spannung am Wechselrichter anliegt.
- 2. Überprüfen Sie, ob die Sicherung des Zählers (wenn installiert) nicht unterbrochen ist (die LED`s am Zähler blinken oder leuchten).
- 3. Rufen Sie den Setup-Modus auf, scrollen Sie zum Menü "Kommunikation" und wählen Sie "Kommunikation RS485-X Konf."
- 4. Stellen Sie folgendes ein (X steht für den RS485-Anschluss, an den der Zähler angeschlossen ist: 1 oder 2):

- 5. Wählen Sie Gerätetyp -> Ertragszähler.
- 6. Wählen Sie Protokoll -> WattNode.
- 7. Stellen Sie den CT-Wert auf 100 ein, der auf dem Zähler-CT erscheint: CT-Wert

8. Wählen Sie Zählerfunktion **Einspeisung+Bezug** oder **Verbrauch** entsprechend der Zählerposition:

```
E i n s p e i s u n g + B e z u g
E i n s p e i s u n g
V e r b r a u c h
P r o d u k t i o n
B e z u g
K e i n e
```

9. Im Menü RS485 Konf stellen Sie sicher, dass die Geräte-ID auf 2 eingestellt ist und beenden dann den Setup-Modus.

6.2.1 Abschlusswiderstand

Überprüfen Sie, ob der RS485-Abschlusswiderstand (DIP-Schalter) auf dem Wechselrichter AN ist.

Weitere Informationen finden Sie bei Solar Edge, der elgris Z\u00e4hler ist mit dem SE-WND-3Y400-MB-K1 kompatibel.

7 Fronius Kompatibilität

Der elgris SMART METER LAN ist auch mit dem Fronius Smartmeter-Protokoll kompatibel. Dies bedeutet, dass Sie einen elgris SMART METER zusammen mit einen Fronius Wechselrichter mit Datamanager 2.0 für eine 70% oder Nulleinspeisungsregelung nutzen können.

Gleichzeitig können Sie auch das SMA-Protokoll verwenden und z.B. einen SMA-Speicher einbinden.

Die RS-485 Verkabelung ist identisch mit der an dem Fronius-Zähler:

Pin	elgris	Fronius
A	A	A
В	В	В
Ground	GND	GND

Der elgris SMART METER hat standardmäßig einen Abschlusswiderstand.

7.1 elgris Konfiguration

Damit beide Geräten miteinander kommunizieren können, müssen sowohl die Geräte ID als auch der Baudrate identisch sein. Standardmäßig wird ein Baudrate von 9600 8N1 empfohlen mit der Geräte ID 1.

Die Geräte ID oder Slave Adress finden Sie unter Start->Einstellungen->Allgemein unter "Erweiterte Einstellungen":

MODBUS RTU:	1	FRONIUS	~	MODBUS RTU

Es wird immer die Standard-Adresse 1 sowie der Inverter angezeigt, unabhängig davon, was eingestellt worden ist.

Damit die Änderungen übernommen werden, muss der elgris SMART METER noch ein Mal neu gestartet werden, indem die Spannung kurz unterbrochen wird.

7.2 Fronius Konfiguration

Gehen Sie zum Menüpunkt "Zähler" und selektieren Sie den Fronius Smart Meter.

Ein Fenster zeigt den Suchvorgang an:

Hinweis	1
Der Zähler wurde aktiviert und sollte in kürze Daten liefern. Bitte warten Sie Status: suche Zähler	einen Moment!
	Abbrechen

Danach wird der Zähler mit einer Seriennummer angezeigt:

Hinweis	
Status: OK	Bezug 0 W
Zählerposition:	🖲 Einspeisepunkt 🔿 Verbrauchszweig
Modbus Adresse:	1
Seriennummer:	1900044068
	OK Abbrechen

Damit ist die Inbetriebnahme abgeschlossen und die Einstellungen können abgespeichert werden.

8 SDM-630 Kompatibilität

Der elgris SMART METER LAN ist auch mit dem SDM-630 Zähler kompatibel. Sie können die Daten sowohl über MODBUS TCP als auch über RTU abrufen.

Durch diese Kompatibilität können Sie auch Wechselrichter, welche den SDM-630 unterstützen, mit dem elgris SMART METER LAN koppeln und so z.B. einen SMA-Speicher oder eine Wallbox ansteuern.

Die RS-485 Verkabelung nutzt A, B und GND.

Der elgris SMART METER hat standardmäßig einen Abschlusswiderstand.

8.1 elgris Konfiguration

Damit beide Geräten miteinander kommunizieren können, müssen sowohl die Geräte-ID als auch die Baudrate identisch sein. Standardmäßig wird eine Baudrate von 9600 8N1 empfohlen mit einer Geräte ID 1.

Die Geräte ID oder Slave Adresse finden Sie unter Start->Einstellungen->Allgemein unter "Erweiterte Einstellungen":

MODBUS RTU: 1 SDM630 V MODBUS RTU

Es wird immer die Standard-Adresse 1 sowie der Inverter angezeigt, unabhängig davon, was eingestellt worden ist.

Damit die Änderungen übernommen werden, muss der elgris SMART METER nochmal neu gestartet werden, indem die Spannung kurz unterbrochen wird.

8.1 SDM-630 Register Darstellung

Folgende Register können über MODBUS TCP mit der Slave ID = 1 oder RTU (mit der eingestellten Adresse) sowie der Funktion 0x04 abgerufen werden.

Register-Adresse startet mit 1.

Address	Size	Name	Label	Value	Туре	R/W	Description
30001	2	PhVphA	Voltage AN		float	R	Phase voltage AN
30003	2	PhVphB	Voltage BN		float	R	Phase voltage BN
30005	2	PhVphC	Voltage CN		float	R	Phase voltage CN
30007	2	AphA	Amps Phase A		float	R	Phase A current
30009	2	AphB	Amps Phase B		float	R	Phase B current
30011	2	AphC	Amps Phase C		float	R	Phase C current
30013	2	WphA	Watts phase A		float	R	Real power phase A
30015	2	WphB	Watts phase B		float	R	Real power phase B
30017	2	WpbC	Watts phase C		float	R	Real power phase C
30019	2	VAphA	VA phase A		float	R	Apparent power phase A
30021	2	VAphB	VA phase B		float	R	Apparent power phase B
30023	2	VAphC	VA phase C		float	R	Apparent power phase C
30025	2	VARphA	VA phase A		float	R	Reactive power phase A
30027	2	VARphB	VA phase B		float	R	Reactive power phase B
30029	2	VARphC	VA phase C		float	R	Reactive power phase C
30031	2	PFphA	PF phase A		float	R	
30033	2	PFphB	PF phase B		float	R	
30035	2	PFphC	PF phase C		float	R	
30037	2		Voltage Angle A		float	R	Voltage angle A
30039	2		Voltage Angle B		float	R	Voltage angle B
30041	2		Voltage Angle C		float	R	Voltage angle C
30043	2		Voltage LN		float	R	Average LN voltage
30047	2		Current LN		float	R	Average LN current
30049	2		Sum of current		float	R	Sum of current
30053	2		Total W		float	R	Total system power
30057	2		Total VA		float	R	Total system VA
30061	2		Total Var		float	R	Total system Var
30063	2		Total PF		float	R	Total system PF
30067	2		Total angle		float	R	Total system angle
30071	2		Frequency		float	R	Frequency
30073	2		Total Imp. kWh		float	R	Total Import kWh
30075	2		Total Exp. kWh		float	R	Total Export kWh
30077	2		Tot. Imp. kVArh		float	R	Total Import kVArh
30079	2		Tot. Exp. kVArh		float	R	Total Export kVArh
30081	2		Tot. VAh		float	R	Tot VAh

9 MODBUS TCP

Der ELGRIS SMART METER enthält einen MODBUS TCP-Server mit Parameterzuordnung gemäß der SunSpec Parameterliste 203. Durch die Bereitstellung eines offenen Protokolls kann die Implementierung einfach an die Benutzerbedürfnisse angepasst werden.

Der MODBUS verwendet standardmäßig den Port 502 und Slave ID = 1.

9.1 Allgemeine Register Darstellung

Die erste Registeradresse ist 40000 und die Register können mit der Funktion 0x03 gelesen werden.

Address	Size	Name	Label	Value	Туре	R/W	Description
							Value = "SunS" (0x53756e53).
40000	2	ID	Common	1	uint32	R	Uniquely identifies this as a
							SunSpec MODBUS Map
							Value = 0x0001. Uniquely identifies
40002	1	DID	SunSpec_DID	1	uint16	R	this as a SunSpec Common Model
							Block
40002 1			SupSpac Longth	6E	uint16	L L	65 = Length of block in 16-bit
40005	T	L	Sunspec_Length 65 unit16		К	register	
40004	16	Mn	Manufacturer		string	R	"elgris"
40020	16	Md	Model		string	R	"SMART METER"
40036	8	Opt	Options		String	R	Not used, for future compatibility
40044	8	Vr	Version		string	R	"1.10.15"
40052	16	SN	Serial Number		string	R	19000XXXX (SMA serial compliant)

9.2 Register-Darstellung WYE connect Meter Model

Address	Size	Name	Label	Value	Туре	R/W	Description
							Value = 203
			WYE-connect				Uniquely identifies this
40069	1	ID	three phase	1	uint16	R	as a
			(abcn) meter				SunSpec 203 MODBUS
							Мар
40070	1		SunSpor Longth	105		D	105 = Length of block in
40070	1	L	Sunspec_Length	103	unitio	n	16-bit register
40071	1	А	Amps		int16	R	Total AC current
40072	1	AphA	Amps Phase A		int16	R	Phase A current
40073	1	AphB	Amps Phase B		int16	R	Phase B current
40074	1	AphC	Amps Phase C		int16	R	Phase C current
40075	1	A_SF			sunssf	R	Current scale factor
40076	1	1 PhV	Voltage I N		int16 R	R	Line to neutral AC
40070	-		Voltage LIV		intro	, N	voltage
40077	1	PhVphA	Voltage AN		int16	R	Phase voltage AN
40078	1	PhVphB	Voltage BN		int16	R	Phase voltage BN
40079	1	PhVphC	Voltage CN		int16	R	Phase voltage CN
40080	1	PPV	Voltage LL		int16	R	Line to Line AC voltage
40081	1	PhVphAB			uint16	R	Line voltage AB
40082	1	PhVphBC			uint16	R	Line voltage BC
40083	1	PhVphCA			uint16	R	Line voltage CA
40084	1	V_SF			sunssf	R	Voltage scale factor
40085	1	Hz	Hz		int16	R	Frequency

40086	1	Hz_SF		sunssf	R	Frequency scale factor
40087	1	W	Watts	int16	R	Total real power
40088	1	WphA	Watts phase A	int16	R	Real power phase A
40089	1	WphB	Watts phase B	int16	R	Real power phase B
40090	1	WpbC	Watts phase C	int16	R	Real power phase C
40091	1	W_SF		sunssf	R	Real power scale factor
40092	1	VA		int16		AC apparent power
40093	1	VAphA	VA phase A	int16	R	Apparent power phase A
40094	1	VAphB	VA phase B	int16	R	Apparent power phase B
40095	1	VAphC	VA phase C	int16	R	Apparent power phase C
40096	1	VA_SF		sunssf	R	Apparent power scale factor
40097	1	VAR		int16		AC reactive power
40098	1	VARphA	VA phase A	int16	R	Reactive power phase A
40099	1	VARphB	VA phase B	int16	R	Reactive power phase B
40100	1	VARphC	VA phase C	int16	R	Reactive power phase C
40101	1	VAR_SF		sunssf	R	Reactive power scale factor
40102	1	PF	PF	int16	R	Power factor
40103	1	PFphA	PF phase A	int16	R	
40104	1	PFphB	PF phase B	int16	R	
40105	1	PFphC	PF phase C	int16	R	
40106	1	PF_SF		sunssf	R	Power factor scale factor
40107	2	TotWhExp		acc32	R	Total Wh exported
40109	2	TotWhExpPhA		acc32	R	Total Wh exported phase A
40111	2	TotWhExpPhB		acc32	R	Total Wh exported phase B
40113	2	TotWhExpPhC		acc32	R	Total Wh exported phase C
40115	2	TotWhImp		acc32	R	Total Wh imported
40117	2	TotWhImpPhA		acc32	R	Total Wh imported phase A
40119	2	TotWhImpPhB		acc32	R	Total Wh imported phase B
40121	2	TotWhImpPhC		acc32	R	Total Wh imported phase C
40123	1	TotWhSF		sunssf	R	Real energy scale factor
40125	2	TotVARhExp		acc32	R	Total VAR exported
40127	2	TotVARhExpPhA		acc32	R	Total VAR exported phase A
40129	2	TotVARhExpPhB		acc32	R	Total VAR exported phase B
40131	2	TotVARhExpPhC		acc32	R	Total VAR exported phase C
40133	2	TotVARhImp		acc32	R	Total VAR imported
40135	2	TotVARhImpPhA		acc32	R	Total VAR imported phase A

10 Technische Spezifikationen

			WiFi oder LAN Versions abhängig			
			Wert			
	Prozessor		32 Bits Prozessor			
	Schnittstelle LAN		10 / 100 Mbit MDIX			
	Schnittstelle RS-485		1200 – 115200 Baud			
E.	Bemessungsspannung	Vac	230 / 400			
me	Betriebsspannung	Vac	100 – 240			
lge	Frequenzbereich	Hz	50 / 60			
A	Eigenverbrauch insgesamt	W	< 1			
	Strom	mA	50 / 100 / 1000 / 5000 (Wandler)			
	Anlaufstrom	mA	1			
	Spannung	%	0,5			
	Strom	%	0,5			
<u>ب</u>	Wirkleistung	%	1,0			
gke	Scheinleistung	%	1,0			
auig	Blindleistung	%	1,0			
enä	Leistungsfaktor (PF)	%	1,0			
0	Wirkleistung IEC 62053-22		Klasse 1			
	Schutzklasse		11			
	Schutzart		IP20			
b0	Gewicht	kg	0,2 - 0,3			
lun	Maße	TE	4			
geb	Anschlussquerschnitt Klemmen	mm²	< 4			
Jm	Umgebungstemperatur	°C	-10-40			
	Maximale Höhe über NN	m	1000			
	Maximale Höhe über NN	m	1000			